研究论文 正式出版 版本 3 Vol 9 (5) : 470-479 2018.
下载
兴隆山油松树轮宽度与太阳年辐射总量的关系分析
Analysis on the Relationship between Tree Ring Width of Pinus tabulaeformis Carr. and Solar Annual Average Radiation in Xinglong Mountain
: 2018 - 05 - 09
21 1 0
摘要&关键词
摘要:利用采自兰州市榆中县兴隆山自然保护区的油松树轮资料,建立了研究区域的树轮STD年表。并利用1960~2016 年该区域的太阳年辐射总量资料,将油松树轮宽度与太阳年辐射总量的年际变化趋势相比较,利用Pearson分析初步探究其相关性。采用滑动相关分析等方法,探讨了研究区域油松树轮宽度与太阳年辐射总量的关系随时间的变化。结果表明,树轮宽度与太阳年辐射总量在年际上存在较为一致的变化趋势,且该树轮宽度标准化年表对研究区域太阳年辐射总量具有一定的指示意义。在此基础上设计转换方程,利用多元回归技术重建了研究区1640年—2015年时段的太阳年辐射总量变化历史,重建序列的方差解释量为36.9% (F=15.206, p <0.0001)。在过去的376年中,太阳年辐射总量表现出明显的年际间频繁波动。并且极值年出现的频率较高. 其中极高辐射总量年有 70 年, 极低辐射总量年有 68 年, 分别占整个时段的 18.67%和 18.04%。
关键词:兴隆山、油松、树轮宽度、相关性、太阳年辐射总量重建
Abstract & Keywords
Abstract: Background, aim, and scope Radiation research is essential for better understanding past climate change,and in various climatic factors,the amount of radiation is also an important indicator of the growth of trees. However,so far involving the tree-ring data and radiation changes in the research results are still relatively rare. Tree-rings have been considered as one of the best known archives in the past climate research field with their strong continuity,high resolution and easy access to duplicate features. In our study,we used the Chinese pine tree (Pinus tabulaeformis Carr.) from Mt. Xinglong in north-central China. Materials and methods Employing the standard methods sponsored by the International Tree-Ring Data Bank (ITRDB),we collected 44 tree cores from 22 trees in Mt. Xinglong (103°50′—104°10′E,35°38′—35°58′N,annual average radiation is 5122 MJ/m2)during November,2016. In the laboratory,the standard dendrochronological processes were employed,and the ring-widths of each core were measured with a precision of 0.001 mm. After cross-dating,the COFECHA program was used to control the quality of cross-dating. Three tree ring chronologies (STD,RES and ARS chronologies) were carried out with the ARSTAN program. To clarify the climatic conditions in our study area,the total annual radiation data from 1960 to 2016 were extracted from the Yuzhong station (104.15ºE,35.87 ºN,1875 m a.s.l.). We compared the tree-ring widths and the total annual radiation,used Pearson correlation analyses to preliminary to identify their relationship. We also explored the change of the tree-ring chronology and total radiation over time by using the sliding correlation analysis. Based on the correlation analysis,we use multivariate regression analysis to establish the conversion equation of the annual total radiation of the STD chronology. And use the conversion equation to reconstruct the annual total radiation from 1640 to 2015 in the historical period. Results In the sliding correlation analysis,the sliding window is chosen for 11 years. Since the solar sunspot activity period is 11 years,if the sunspots are relatively large,the sun activity will be more intense,the radiation sunshine hours and the solar radiation all will be increase. Therefore,the sliding correlation coefficient calculated by the 11-year sliding window can better represent the effect of radiation intensity on tree-ring width. During the study year, the correlation coefficient r (r0 = 0.338,p <0.01,n = 57) between tree-ring width and annual radiation in the region from 1960 to 2016 was tested by the confidence degree <0.01,indicating that the total annual radiation and the tree-ring width have a more significant positive correlation. The sliding correlation coefficient shows that the relationship between tree-ring width and total annual radiation is always positive correlation between 1970 and 2016. Among them,the positive correlation in 1970—1991 reached the significance level of 0.05,and the positive correlation between them was significant. It shows that the change of total annual solar radiation is always the main part of the variation of tree-ring width. From 1992 to 2016, the sliding correlation coefficient between the two tends to fluctuate between 0.3—0.5,fluctuating within this range and tends to be stable. The results showed that the factors influencing the radial growth of the width of Pinus tabulaeformis Carr. trees became more complicated. However, its relationship with the change of annual total radiation reached a steady state. It is of great significance to indicate the change of the annual total radiation of Pinus tabulaeformis Carr. trees in this region. Using multivariate regression technique to reconstruct the history of the change of annual total radiation in the study area from 1640 to 2015. During the past 376 years,the annual total amount of radiation showed significant inter-annual fluctuations. There are times below average during the reconstruction period: 1646—1668,1705—1727,1739—1751,1758—1774,1832—1846,1856—1875,1923—1944,1984—2010; There are higher periods: 1683—1704,1728—1738,1752—1757,1775—1812, 1876—1922,1945—1983.The rest of the year's values are close to the average. At the same time, there is a high frequency of extremes, of which 70 were very high and 68 were very low, accounting for 18.67% and 18.04% of the total period (1640-2016) respectively. Discussion During the study year,the relationship between tree-ring width and total annual radiation was always positively correlated. The growth of Pinus tabulaeformis Carr. was more sensitive to the change of total annual radiation. From a physiological point of view,in a certain range of radiation intensity,adequate light to make the heat required for tree growth conditions are met,will promote the plant photosynthesis,is conducive to the accumulation of organic matter,while ensuring the growth of consumption. For the next year to reserve part of the nutrients,so easy to form a wide ring. At the same time, the total annual solar radiation can affect the radial growth of trees by affecting the temperature and precipitation on the earth. According to the geographical location and climate characteristics of Xinglong Mountain, Xinglong Mountain is located in the east, the most western end of the monsoon region, the boundary between semi-arid and semi-humid areas, which is a temperate and semi-humid climate. Water is the main limiting factor of plant growth in this area. When the amount of precipitation is constant, if the amount of solar radiation increases, it will accelerate the evaporation of water and reduce the soil water content, thus limiting the normal growth of plants. In addition, changes in the total annual solar radiation will cause changes in temperature, in addition to direct changes in temperature affect photosynthesis, but also indirectly adjust the plant's respiratory and transpiration, Therefore, It also has an impact on the physical activity of trees. Therefore, the width of tree rings can truly record the favorable or unfavorable changes of solar radiation to its growth, and reflect the change of total annual solar radiation. Conclusions The tree-ring width chronology of Mt. Xinglong can indicate the change in the total amount of annual radiation in the region for a period of 1970—2016. The radial growth of Pinus tabulaeformis Carr. is more sensitive to the change of total annual radiation. It is further indicated that the tree chrono chronology has a certain significance to the total annual radiation in the study area. According to the reconstruction results in the study area from 1640 to 2015,during the past 376 years,the annual total amount of radiation showed significant inter-annual fluctuations. And there are times below average during the reconstruction period: 1646—1668,1705—1727,1739—1751,1758—1774,1832—1846,1856—1875,1923—1944,1984—2010;There are higher periods: 1683—1704,1728—1738,1752—1757,1775—1812, 1876—1922,1945—1983. The rest of the year's values are close to the average. At the same time, there is a high frequency of extremes, of which 70 were very high and 68 were very low, accounting for 18.67% and 18.04% of the total period (1640—2016) respectively. Recommendations and perspectives Due to the shortage of historical data related to annual radiation in this study area. Therefore,historical records can not be used to corroborate the reliability of this paper. Therefore, the future research on radiation in the history of the region is still very necessary.
Keywords: Xinglong Mountain; Pinus tabulaeformis Carr.; The tree ring width; The total annual solar radiation reconstruction; Correlation
树木年轮学是基于植物生理学,依据树木年轮生长的特性,用来研究环境对年轮生长影响的学科,目的是获取代用的资料,从而重建环境因子的变化(Fritts,1997;陈向军,2009; 雷静品等,2009;胡义成,2011;陶树光,2013)。鉴于树木年轮资料具有适用区域广、定年准确、连续性强、分辨率高和易于获取复本等特点,树木年轮分析长期以来在地球科学界受到了高度的重视,在过去全球变化研究中,被列为重要的技术途径之一,在历史时期气候变化研究中得到了广泛的应用(Liu et al,2006;丁小俊,2007;Mann et al,2008;Liu et al,2009;姜倩倩,2012;Yi et al,2012;蔺甲等,2013;Liu et al,2013;Yang et al,2014)。树木年轮对气候变化的响应非常敏感,树轮研究学者们用各种办法来提取蕴藏在树轮中丰富的环境变化信息,开展了很多的研究工作,并利用树轮资料重建长序列的气温、降水等(刘禹等,2006;Liu et al,2006;喻树龙等,2008;刘禹和安芷生,2009;Yang et al,2014;包光等,2015;蔡秋芳和刘禹,2015;刘禹等,2015;方克艳等,2015)。在各类气候因子中,辐射量也是影响树木生长的一项重要指标。然而,到目前为止涉及树轮资料与辐射量变化的研究成果还较为稀少。
本文选择位于甘肃省兰州市的兴隆山国家自然保护区针对我国北方地区的典型树种—油松(Pinus tabulaeformis Carr.)开展树轮气候学研究,首次分析油松径向生长与太阳年辐射总量的响应关系。研究结果可对兴隆山区域树轮与太阳年辐射总量的研究提供基本认识,为下一步利用树轮资料进行历史气候序列重建打下基础,对于认识太阳年辐射总量变化对森林生态系统的影响也具有重要意义。
1   资料与方法
1.1   研究区概况
本文选用的研究区位于甘肃省兰州市榆中县西南的兴隆山(103°50′—104°10′E,35°38′—35°58′N)。兴隆山山体高大,位于东部季风区最西端,即季风区边缘,属温带半湿润气候,四季变化分明,同时具有显著的大陆性气候,雨热同期,冬季寒冷干燥,夏季温暖多雨(李秀梅等,2008,2011)。自1954年有气象记录以来,榆中气象站的年均温在6.8°C,年降水量385.8mm,年平均太阳辐射量为5122MJ/m2
1.2   树轮资料
油松是采样区内的主要树种,已有研究证明了油松在历史气候重建中的应用价值(史江峰等,2006;郑永宏等,2012;赵伯阳等,2016;宋慧明等,2017)。按照国际树木年轮数据库(ITRDB)的标准,共采集兴隆山区域油松22棵,每棵树用生长锥从不同方向(一般为相对方向)钻取2棵样芯。在实验室里,以现代树木年轮学流程(陈向军等,2008),对样本进行干燥、固定、磨光、交叉定年、测量年轮宽度精度为 0.01 mm),用COFECHA计算机程序进行交叉定年质量控制(Holmes,1983)。
年表通过ARSTAN程序建立(蔡秋芳和刘禹,2013)。根据树木生长状况,为了更多地保留样本完整信息并去除树木自身生长趋势,采用负指数函数或线性拟合每个测量序列的生长趋势,最终得到标准年表(STD)、差值年表(RES)和自回归年表(ARS)。本文采用STD标准年表(图1)。样本解释信号强度(EPS) 与样本量大小有关,可以用来确定年表的可靠起始时间(赵伯阳等,2016)。研究者们普遍认为当 EPS 的值大于 0.85 时年表可靠,据此,本研究采用年表起始年代为1640年,序列长度为377年。


图1   兴隆山STD年表、样品数量、滑动EPS及滑动Rbar
Fig.1 Plot for XLS STD chronology,sample depth,running EPS and Running Rbar
1.3   气象资料
气候数据选择与树木年轮取样地点距离最近的榆中县气象站(104.15ºE,35.87ºN,海拔高度1875m),气象数据取自气象科学数据共享服务网(http://cdc.cma.goc.cn/home.do)。本文所用的气象数据为太阳年辐射总量数据(1960—2016年)(图2)。


图2   榆中气象站多年太阳年辐射总量分布
Fig.2 Annual total solar radiation of Yuzhong station
1.4   方法
树轮宽度与辐射量的关系随时间变化可能是不平稳的,为了提高研究的准确率,研究树轮宽度对太阳年辐射总量响应的变化特征,本文先将1960—2016年兴隆山树轮宽度与年辐射总量进行比较,并计算二者的相关系数进行初步的相关性分析。再采用滑动相关方法对树轮宽度与太阳年辐射总量二者相关情况进行衡量,计算得到1970—2016年二者之间滑动窗口为 11 年的滑动相关系数,得到相关滑动相关系数的时间长度为47年。在相关分析的基础上, 采用多元回归分析法建立STD年表对太阳年辐射总量的转换方程,得到t年的树轮宽度、t+1的树轮宽度与t年的年辐射总量的回归方程,并重建研究区域1960年—2015年的太阳年辐射总量,对重建序列与观测序列进行比较分析。最后,利用转换方程对历史时期1640年—2015年的太阳年辐射总量进行重建。
2   结果与讨论
2.1   滑动窗口的选择
滑动相关性分析中滑动窗口选择为11年,由于太阳黑子活动周期为11年,太阳黑子是反映太阳活动强弱的指标之一,一般认为太阳黑子相对数多,太阳活动越剧烈,辐射日照时数增加,太阳辐射量增加(李慧芳,2016;蒋琼妃,2014;向南彬,2013;杨冬红,2013)。所以利用11年滑动窗口计算得到的滑动相关系数能够更好地代表辐射强度对树轮宽度的影响。
2.3   树轮宽度对太阳年辐射总量的响应
通过比较1960—2016年兴隆山树轮宽度与太阳年辐射总量的年际变化(图3)可以看出,二者存在较为一致的变化。说明该地区太阳年辐射总量对树轮宽度具有正向影响。在研究时段内,该地区树轮宽度的变化可以较好地反映出年太阳辐射总量的变化。
1960~2016年该地区树轮宽度与太阳年辐射总量的相关系数r达到0.411( 显著性水平为0.01的临界值r0.01=0.338,n=57),通过了置信度<0.01的检验,表明该地区太阳年辐射总量与树轮宽度具有较为显著的正相关关系。
通过滑动窗口为11年的滑动相关性分析,其滑动相关系数变化(图4)表明,1970—2016年树轮宽度与年辐射总量的关系始终保持正相关。其中,1970—1991年期间的部分时段的正相关达到了0.05的显著性水平,二者之间的正相关关系显著,表明太阳年辐射总量表征的变化始终是树轮宽度变化的主体。在1992年至2016年,二者的相关系数趋向于0.3—0.5之间,在该幅度范围上下波动,并趋于稳定。表明油松树轮宽度的径向生长所受到的影响因素变的更为复杂,但其与太阳年辐射总量的变化之间的关系达到稳定状态。因此对于该地区油松的树轮宽度指示太阳年辐射总量的变化具有良好的意义。
总的来说,在研究时段内,树轮宽度与太阳年辐射总量的关系始终保持较为明显的正相关,油松的生长对太阳年辐射总量的变化较为敏感。并且二者的相关关系逐渐趋向于稳定,在小幅度范围上下波动。因此,兴隆山的树轮宽度年表可以指示该区域1970—2016年共47年的年际辐射总量变化。从生理学角度上来看,在一定的辐射强度范围内,充足的光照使树木生长所需的热量条件得到满足,会促进植物光合作用的进行,有利于有机物的积累,在保证生长消耗的同时,可以为下一年储备部分营养物质,所以易形成较宽的年轮。同时,太阳年辐射总量也可以通过影响地球上的气温、降水来影响树木的径向生长。结合兴隆山的地理位置与气候特点来看,兴隆山位于东部,季风区最西端,半干旱区与半湿润区的分界线,属温带半湿润气候,水分是该地区植物生长的主要限制性因子。当降水量一定时,如果太阳辐射量增加,会加速水分蒸发,降低土壤含水量,从而限制植物的正常生长。除此之外,太阳年辐射总量的变化一定程度上会引起气温的变化,气温变化除了直接影响光合作用,也会间接调整植物的呼吸和蒸腾作用,因此对树木的生理活动也会产生影响。因此,树木年轮的宽窄能够真实地记录太阳辐射对其生长有利或不利的变化,从而反映出太阳年辐射总量的变化。(刘禹等,2001;刘禹等,2009;王瑞丽等,2011;蔡秋芳等,2012;郑永宏,2012;包光等,2015)。


图3   太阳年辐射总量与树轮宽度变化趋势的比较
Fig.3 Comparison of variation trend of total annual solar radiation and tree-ring width


图4   标准年表与太阳年辐射总量滑动相关
Fig.4 The sliding correlation between STD chronology and annual total solar radiation
2.3   太阳年辐射总量的重建
由于气象资料记录时段比较短,从1960—2016年只有 57 a,我们采用逐一剔除法来检验相关系数r的稳定性(刘禹等,2003)。将年辐射总量和STD年表进行逐一剔除法检验(刘禹等,2004;刘禹等,1999;刘禹等,2001),结果表明,去除1979年之后的相关系数由原来的0.401提高到了 0.481,其余值对相关系数均没有太大的影响, 故我们选用剔除 1979年后进行重建。
考虑到在t年形成的年轮,不仅受到当年气候的影响,而且还受到前一年的滞后影响。树轮宽度序列的一阶自相关系数较高为0.537,表明t年的气候因素不仅影响当年的年轮宽度,同时还影响t+1年的年轮宽度(Briffa K R et al,1992)。因此,本文利用多元回归技巧以树轮宽度指数重建太阳年辐射总量序列,转换方程为:
R = 439.122 W t + 345.262 W(t+1)+ 4604.207
式中,R 为t年的太阳年辐射总量,W t 为STD年表t年的轮宽指数,W(t+1)为STD年表t+1年的轮宽指数。这一函数式的复相关系数r = 0.607,方差解释量R2 =0.369,F 检验值为15.206,p<0.0001,D/W即Durbin-Watson值(其主要用于检验回归方程的一阶自相关性)为1.131,表明差值序列中含有自相关成分。
重建结果与观测时段(1960~2015 年)的太阳年辐射总量对比(图 5)表明二者之间有较好一致性。我们进一步计算了重建序列与观测序列的一阶差相关系数(蔡秋芳和刘禹,2013),结果为0.338(P<0.05),说明重建序列与实测序列的相似度较好,并且在低频变化上较为吻合。
通过转换方程,我们重建了兰州市榆中县兴隆山自然保护区1640—2015年太阳年辐射总量的变化序列(图6)。可以看出该地1640年以来太阳年辐射总量年际间波动频繁。为了了解年辐射总量变化的低频信息,对重建序列进行了 11 a 滑动平均。其中红线为11年滑动趋势线,水平蓝线是多年平均值,为 5361.341 MJ/m2。可以看到在重建期间太阳年辐射总量有明显的高低变化,较低的时段有:1646年—1668年、1705年-1727年、1739年-1751年、1758年-1774年、1832年-1846年、1856年—1875年 、1923年—1944年、1984年—2010年;而太阳年辐射总量较高的时段有: 1683年—1704年、1728年-1738年、1752年-1757年、1775年-1812年、 1876年—1922年、1945年—1983年。其余年的值接近于平均值。同时,极值年出现的频率较高。其中极高辐射总量年有 70 年, 极低辐射总量年有 68 年,分别占整个时段(1640~2016年)的 18.67%和 18.04%。


图5   观测值与重建值的比较
Fig.5 Comparison between observed (blue line) and reconstructed (black line) annual total radiation


图6   1640—2015年太阳年辐射总量的重建
Fig.6 Reconstructed annual total solar radiation from 1640 to 2015
3   结论
在兰州市榆中县兴隆山自然保护区内采集了油松树芯样本,按照标准方法建立了研究 区的树轮宽度年表。统计相关分析表明,研究时间段内该地区树轮宽度与太阳年辐射总量的年际变化趋势具有较好的一致性,且二者的相关系数r达到0.411,通过了置信度<0.01的检验。同时,该地区树轮宽度与太阳年辐射总量的滑动相关性较高并逐渐趋于在一定范围内小幅度波动。其中,1970—1991年期间的正相关关系十分显著,通过了置信度<0.05的检验。在1992年至2016年,二者的相关系数趋向于0.3—0.5之间,在该幅度范围上下波动。由此可知,油松树轮宽度的径向生长对太阳年辐射总量的变化较为敏感,兴隆山的树轮宽度年表可以指示该区域1970—2016年共47年的年际辐射总量变化。
进而利用多元回归建立了以树轮宽度指数重建太阳年辐射总量序列的转换方程,该转换方程的方差解释量为 36.9% 。利用树轮资料我们重建了研究区1640年—2015年时段的太阳年辐射总量变化历史,在过去的376年中,太阳年辐射总量表现出明显的年际间频繁波动。 并且在重建期间年辐射总量较低的时段有:1646年—1668年、1705年—1727年、1739年—1751年、1758年—1774年、1832年—1846年、1856年—1875年 、1923年—1944年、1984年—2010年;较高的时段有:1683年—1704年、1728年—1738年、1752年—1757年、1775年—1812年、 1876年—1922年、1945年—1983年。其余年的值接近于平均值。同时,极值年出现的频率较高. 其中极高辐射总量年有 70 年, 极低辐射总量年有 68 年, 分别占整个时段(1640~2016年)的 18.67%和 18.04% 。
由于本文所研究区域与太阳年辐射量相关的历史数据资料短缺。因此,无法利用历史记录佐证本文重建的可靠性。因此未来对这一区域历史辐射方面的研究仍然十分必要。
致谢:
感谢“中国科学院大学生创新实践训练计划”资助,感谢刘禹老师的指导和帮助,野外采样工作中孙长峰和沈宝印的帮助,以及宋慧明、梅若晨在实验室的帮助,在此感谢!
包 光,刘 娜,刘 禹.2015.秦岭中、西部地区温度变化的树木年轮记录[J].地球环境学报,6(3):154-160.[Bao G, Liu N, Liu Y. 2015. Temperature variability referred from tree rings in central and western Qinling Mountains, China [J]. Journal of Earth Environment. 6(3):154-160.]
蔡秋芳,刘禹. 2013. 湖北麻城马尾松树轮宽度对气候的响应及1879年以来6~9月平均最高气温重建[J]. 科学通报, 58(s1):169-177.[ [Cai Q F, Liu Y. 2013. Response of Masson Pine Tree Wheel Width to Climate in Macheng County, Hubei Province and Reconstruction of Mean Maximum Air Temperature from June to September, 1879[J]. Chinese Science Bulletin 58(s1):169-177.]
蔡秋芳,刘 禹. 2013. 山西五鹿山油松树轮宽度年表的建立及过去百余年5—6月平均气温变化[J].第四纪研究,33(3):511-517.[Cai Q F, Liu Y. 2013. The Development Of A Tree. Ring Width Chronology And The May—June Mean Temperature Variability In Wulu Mountain. Shanxi Pro Vince Of No Rth-Central China [J]. Quaternary Sciences, 33(3):511-517.]
蔡秋芳,刘 禹. 2015. 山西中条山白皮松和华山松径向生长对气候变化的响应及气候意义[J]. 地球环境学报,6(4): 208–218. [Cai Q F, Liu Y. 2015. Climatic responses of Pinus bungeana Zucc. and Pinus armandii Franch. in Mt. Zhongtiao, Shanxi Province, and May — July temperature variations since 1920 [J]. Journal of Earth Environment, 6(4): 208–218.]
蔡秋芳,刘 禹,王艳超. 2012. 陕西太白山树轮气候学研究[J].地球环境学报,(3):874-880. [Cai Q F, Liu Y, Wang Y C. 2012. Dendroclimatic investigation of Chinese Pine in Taibai Mountain, Shaanxi Province [J]. Journal of Earth Environment, (3):874-880.]
陈向军. 2009. 新疆天山北坡东部地区树木年轮气候研究[D].新疆师范大学.[Chen X J. 2009. The Dendroclimatological Study on the East Part of the Northern Slope of Tianshan Mountain, Xinjiang Province [D]. Xinjiang Normal University]
陈向军,袁玉江,陈 峰,等. 2008. 天山北坡东部地区树轮宽度年表特征分析[J]. 中国沙漠,28(5):833-841.[Chen X J, Yuan Y J, Chen F, et al. 2008. Analysis of Tree-ring Width Chronology Characteristics from Eastern Area on North Slope of Tianshan Mountains [J]. Journal of Desert Research, 28(5):833-841.]
丁小俊. 2007. 利用树轮资料的EOF迭代方案重建中东亚干旱半干旱区1500年来气温变化的初步研究[D]. 兰州大学.[Ding X J. 2007.Reconstruction of temperature variation since 1500AD in the arid-semiarid central-eastern Asia using tree-ring chronology based on EOF iteration scheme [D]. Lanzhou University]
方克艳,杨 保,郑怀舟,等. 2015. 树轮学研究方法及其在全球变化中的应用[J]. 第四纪研究,35(5):1283-1293.[ Fang K Y, Yang B, Zheng H Z, et al. 2015. Applying Tree, Ring Methods In The Global Changes Studies [J]. Quaternary Sciences. 35(5):1283-1293.]
胡义成. 2011. 阿勒泰地区中东部树木年轮气候重建与分析[D]. 新疆师范大学.[Hu Y C.2011. Reconstruction and Analysis of the Dendroclimatology in the Middle and East of Altay Region[D]. Xinjiang Normal University.]
姜倩倩. 2012. 徂徕山不同立地条件下油松、麻栎和侧柏对气象因子的响应[D]. 山东农业大学.[Jiang Q Q. 2012. Responses of Ring Width of Pinus tabulaeformis, Platycladus orientalis and Quercus acutissima to the Meteorological Factor at Different Site Condition in CuLai Mountain[D]. Shandong Agricultural University.]
姜琼妃. 2014. 太阳黑子相对数对地磁活动的影响及气候效应[D]. 南京信息工程大学. [Jiang Q F. 2014. Influence of Sunspots Number on Geomagnetic Activity and Climatic Change[D]. Nanjing University of Information Science & Technology. ]
雷静品,肖文发,黄志霖,等. 2009. 三峡库区上游马尾松年轮年表及其与气候变化的关系[C]. 中国林业学术大会. [Lei J P, Xiao W F, Huang Z L, et al. 2009. Relationship between tree-ring chronology of Pinus mussoniana and climate change in Fuling, Three-gorge reservoir area [C]. China forestry Academic Conference.]
李慧芳. 2016. 太阳黑子活动与我国不同区域气候变化相关关系研究[D].陕西师范大学.[Li H F. 2016. Study on the Relationship between Sunspot Activities and Climate Change in Different Regions of China[D]. Shaanxi Normal University. ]
李秀梅,王乃昂,赵 强. 2008. 兴隆山自然保护区森林生态价值评估[J]. 干旱区资源与环境,22(10):91-95.[Li X M, Wang N Q, Zhao Q. Evaluation of Forest Ecosystem in Xinglongshan Mountain Nature Reserve [J]. Journal of Arid Land Resources and Environment, 22(10):91-95.]
李秀梅,王乃昂,赵 强. 2011. 兴隆山自然保护区旅游资源总经济价值评估[J]. 干旱区资源与环境,25(6):220-224.[Li X M, Wang N Q, Zhao Q. 2011. Assessment on the total economic values of Xinglong Mountain Nature Reserve [J]. Journal of Arid Land Resources and Environment, 25(6):220-224.]
蔺 甲,袁玉江,魏文寿,等. 2013. 博州中东部树轮宽度年表特征及其气候响应[J]. 沙漠与绿洲气象,7(1):39-46.[Lin J, Yuan Y J, Wei W S, et al. 2013. Tree-ring Width Chronologies Characteristics in the Middle and East of Boertala Mongolia Autonomous Prefecture and Their Response to Climate Change [J]. Desert and Oasis Meteorology, 7(1):39-46.]
刘 禹,安芷生,Hans W.Linderholm,等. 2009. 青藏高原中东部过去2485年以来温度变化的树轮记录[J]. 中国科学,(2):166-176.[Liu Y, An Z S, Hans W.Linderholm, et al.2009. Qinghai - Tibet Plateau in the eastern part of the past 2485 since the temperature changes in the tree wheel records [J]. Science in China Series D. (2):166-176.]
刘禹, 蔡秋芳, 等. 2001. 树轮降水记录及东亚夏季风强弱变化—以内蒙古包头地区为例[J]. 地学前缘, 8(1):1 - 7.[ Liu Y, Cai Q F, et al.2001. Tree - ring Precipitation Records and the Change of East Asian Summer Monsoon - A Case Study in Baotou, Inner[J]. Geoscience Frontiers, 8(1):1 - 7. ]
刘禹, 蔡秋芳, W.K.Park,等. 2003. 内蒙古锡林浩特白音敖包1838年以来树轮降水记录[J]. 科学通报,9(9):952-957.[Liu Y, Cai Q F, W.K.Park, et al.2003. Tree ring precipitation record since 1838 in Inner Mongolia Xilinhot Baiyin Aobao [J]. Chinese Science Bulletin, 9(9):952-957.]
刘禹, 马利民. 1999, 树轮宽度对近 376年呼和浩特季节降水重建[J]. 科学通报, 44(18):1986 - 1991.[Liu Y, Ma L M. 1999, Tree-ring width of the recent 376 Hohhot seasonal precipitation reconstruction[J]. Chinese Science Bulletin, 44(18):1986 - 1991 ]
刘 禹,马利民,蔡秋芳,等. 2001. 依据陕西秦岭镇安树木年轮重建3—4月份气温序列[J]. 自然科学进展,11(2):157-162.[Liu Y, Ma L M, Cai Q F, et al. 2001. Based on the temperature sequence of 3—4 months from the reconstruction of the tree in Qinling Town, Shaanxi Province [J]. Progress in Natural Science, 11(2):157-162.]
刘禹, 史江峰, V.Shishov, 等. 2004 .以树轮晚材宽度重建公元1726年以来贺兰山北部5~7月降水量[J]. 科学通报, 49(3):265-269.[Liu Y, Shi J F, V.Shishov, et al. 2004. Reconstruct the Precipitation from May to July in the Northern Helan Mountains since 1726 AD[J]. Chinese Science Bulletin, 49(3):265-269 ]
刘禹,杨银科,蔡秋芳,等. 2006. 以树木年轮宽度资料重建湟水河过去248年来6—7月份河流径流量[J]. 干旱区资源与环境,20(6):69-73.[Liu Y, Yang Y K, Cai Q F, et al. 2006. June to July Run off Reconstruction for Huangshui River From Tree Ring Width of For the Last 248 Years [J]. Journal of Arid Land Resources and Environment, 20(6):69-73.]
刘 禹,张艳华,蔡秋芳,等. 2015. 基于树轮宽度重建的河南石人山地区1850年以来季节最低温度及20世纪增温[J].地球环境学报,6(6): 393—406. [Liu Y, Zhang Y H, Cai Q F, et al. 2015. The tree-ring width based seasonal minimum temperature reconstruction at Shiren Mountains, Henan, China since 1850 AD and its record of 20th century warming [J]. Journal of Earth Environment, 6(6): 393–406.]
史江峰,刘 禹,蔡秋芳,等. 2006. 油松(Pinus tabulaeformis)树轮宽度与气候因子统计相关的生理机制——以贺兰山地区为例[J]. 生态学报,(03):697-705.[Shi J F, Liu Y, Cai Q F, et al.2006. A case study of physiological characteristics of statistical correlation between Pinus tabulaeformis tree-ring widths and climatic factors [J]. Acta Ecologica Sinica, (03):697-705. ]
宋慧明,刘 禹,梅若晨,等. 2017. 甘肃竺尼山油松树轮宽度气候响应[J]. 地球环境学报,(02):119-126.[Song H M, Liu Y, Mei R C, et al. 2017. The climatic response of Pinus tabulaeformis Carr. in Mt. Zhuni, Gansu [J]. Journal of Earth Environment, (02):119-126.]
陶树光. 2013. 利用年轮资料重建大兴安岭北部历史气候研究[D]. 内蒙古农业大学. [Tao S G. 2013. Research the Tree-ring Data to Reconstruct the Historical Climate for North of The Daxing’anling [D]. Inner Mongolia Agricultural University.]
王瑞丽,程瑞梅,肖文发,等. 2011. 北亚热带马尾松年轮宽度与NDVI的关系[J]. 生态学报,31(19):5762-5770 [Wang R L, Cheng R M, Xiao W F, et al. 2011. Relationship between masson pine tree-ring width and NDVI in North Subtropical Region [J]. Acta Ecologica Sinica, 31(19):5762-5770.]
向南彬. 2013. 太阳总辐照的演化特征分析[J]. 天文学报,54(3):219-228.[Xiang N B. 2013. Evolution Character Analysis of Total Solar Irradiance [J]. Acta Astronomica Sinica | Acta Astron Sin, 54(3):219-228.]
杨冬红,杨学祥. 2013. 全球气候变化的成因初探[J]. 地球物理学进展,28(4):1666-1677.[Yang D H, Yang X X. 2013. Study on cause of formation in Earth’s climatic changes [J]. Progress in Geophys, 28(4):1666-1677.]
喻树龙,袁玉江,魏文寿,等. 2008. 天山北坡西部树木年轮对气候因子的响应分析及气温重建[J]. 中国沙漠,V28(5):827-832.[Yu S L, Yuan Y J, Wei W S, et al. 2008. Response of Tree-ring to Climate Change and Temperature Reconstruction in West of Tianshan Mountains North Slope [J]. Journal of Desert Research, V28(5):827-832.]
张真真,林振山,杜建丽,等. 2008. 基于EMD北海道地区50年降水及南方涛动的分析[J]. 安徽农业科学,36(24):10562-10564.[Zhang Z Z, Lin Z S, Du J L, et al. 2008. Analysis of the Precipitation in Hokkaido Island over 50 Years and Its Southern Oscillation Based on Empirical Mode Decomposition Method [J]. Journal of Anhui Agricultural Sciences, 36(24):10562-10564.]
赵伯阳,刘 禹,宋慧明等. 2016. 基于油松树轮宽度重建河北青龙过去123年平均相对湿度[J]. 地球环境学报,7(05):509-520.[Zhao B Y, Liu Y, Song H M, et al. 2016. Mean relative humidity reconstruction based on the tree-ring width from Chinese pines since 1890 from the Qinglong region, China [J]. Journal of Earth Environment, 7(05):509-520.]
郑永宏,张 永,邵雪梅,等. 2012. 大别山地区黄山松和油松树轮宽度的气候意义[J]. 地理科学进展,31(1):72-77.[Zheng Y H, Zhang Y, Shao X M, et al. 2012. Climate Significance of Tree Ring Width of Huangshan Pine and Chinese Pine in the Dabie Mountains [J]. Progress in Geography, 31(1):72-77.]
Fritts H C.Tree Rings and Climate [M].London:Academic Press, 1976:270.
Holmes R L. 1983. Computer-assisted quality control in tree-ring dating and measurement [J]. Tree-Ring Bulletin, 43(1):69-78.
Liu Y, An Z S, Linderholm H W, et al. 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings [J]. Science in China Series D, 52: 348–359.
Liu Y, An Z S, Ma H Z, et al. 2006. Precipitation variation in the northeastern Tibetan Plateau recorded by the tree rings since 850 AD and its relevance to the Northern Hemisphere temperature [J]. Science in China Series D, 49: 408–420.
Liu Y, Sun B, Song H M, et al. 2013. Tree-ring-based precipitation reconstruction for Mt. Xinglong, China, since AD 1679 [J]. Quaternary International, 2013, 283(427):46-54.
Mann M E, Zhang Z, Hughes M K, et al 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia [J]. Proceedings of the National Academy of Sciences, 105(36): 13252 – 13257.
Yang B, Qin C, Wang J, et al. 2014. A 3, 500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau [J]. Proceedings of the National Academy of Sciences, 111(8): 2903–2908.
Yi L,Yu H,Ge J,et al. 2012. Reconstruction of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records [J]. Climatic Change, 110(1/2): 469–498.
稿件与作者信息
杨颖川1
YANG Yingchuan1
刘禹2,3*
LIU Yu2,3
liuyu@loess.llqg.ac.cn
郝赛宇4
HAO Saiyu4
基金项目:中国科学院大学生创新实践训练计划
Innovative Practice Training Program for College Students of Chinese Academy of Sciences
出版历史
出版时间: 2018年5月9日 (版本3
参考文献列表中查看
地球环境学报
Journal of Earth Environment